1
0
Fork 0
mirror of git://git.code.sf.net/p/zsh/code synced 2025-01-19 11:31:26 +01:00
zsh/Test/V03mathfunc.ztst
Jun T ef4d20ad6f 31902: rationalise use of gamma function.
Make zsh/mathfunc consistent across systems and use tgamma() where
available
2013-10-27 00:00:56 +01:00

144 lines
4 KiB
Text

# Tests for the module zsh/mathfunc
%prep
if ( zmodload -i zsh/mathfunc ) >/dev/null 2>&1; then
zmodload -i zsh/mathfunc
else
ZTST_unimplemented="The module zsh/mathfunc is not available."
fi
%test
# -g makes pi available in later tests
float -gF 5 pi
(( pi = 4 * atan(1.0) ))
print $pi
0:Basic operation with atan
>3.14159
float -F 5 result
(( result = atan(3,2) ))
print $result
0:atan with two arguments
>0.98279
print $(( atan(1,2,3) ))
1:atan can't take three arguments
?(eval):1: wrong number of arguments: atan(1,2,3)
float r1=$(( rand48() ))
float r2=$(( rand48() ))
float r3=$(( rand48() ))
# Yes, this is a floating point equality test like they tell
# you not to do. As the pseudrandom sequence is deterministic,
# this is the right thing to do in this case.
if (( r1 == r2 )); then
print "Seed not updated correctly the first time"
else
print "First two random numbers differ, OK"
fi
if (( r2 == r3 )); then
print "Seed not updated correctly the second time"
else
print "Second two random numbers differ, OK"
fi
0:rand48 with default initialisation
F:This test fails if your math library doesn't have erand48().
>First two random numbers differ, OK
>Second two random numbers differ, OK
seed=f45677a6cbe4
float r1=$(( rand48(seed) ))
float r2=$(( rand48(seed) ))
seed2=$seed
float r3=$(( rand48(seed) ))
float r4=$(( rand48(seed2) ))
# Yes, this is a floating point equality test like they tell
# you not to do. As the pseudrandom sequence is deterministic,
# this is the right thing to do in this case.
if (( r1 == r2 )); then
print "Seed not updated correctly the first time"
else
print "First two random numbers differ, OK"
fi
if (( r2 == r3 )); then
print "Seed not updated correctly the second time"
else
print "Second two random numbers differ, OK"
fi
if (( r3 == r4 )); then
print "Identical seeds generate identical numbers, OK"
else
print "Indeterminate result from identical seeds"
fi
0:rand48 with pre-generated seed
F:This test fails if your math library doesn't have erand48().
>First two random numbers differ, OK
>Second two random numbers differ, OK
>Identical seeds generate identical numbers, OK
float -F 5 pitest
(( pitest = 4.0 * atan(1) ))
# This is a string test of the output to 5 digits.
if [[ $pi = $pitest ]]; then
print "OK, atan on an integer seemed to work"
else
print "BAD: got $pitest instead of $pi"
fi
0:Conversion of arguments from integer
>OK, atan on an integer seemed to work
float -F 5 result
typeset str
for str in 0 0.0 1 1.5 -1 -1.5; do
(( result = abs($str) ))
print $result
done
0:Use of abs on various numbers
>0.00000
>0.00000
>1.00000
>1.50000
>1.00000
>1.50000
print $(( sqrt(-1) ))
1:Non-negative argument checking for square roots.
?(eval):1: math: argument to sqrt out of range
# Simple test that the pseudorandom number generators are producing
# something that could conceivably be pseudorandom numbers in a
# linear range. Not a detailed quantitative verification.
integer N=10000 isource ok=1
float -F f sum sumsq max max2 av sd
typeset -a randoms
randoms=('f = RANDOM' 'f = rand48()')
zmodload -i zsh/mathfunc
for isource in 1 2; do
(( sum = sumsq = max = 0 ))
repeat $N; do
let $randoms[$isource]
(( f > max )) && (( max = f ))
(( sum += f, sumsq += f * f ))
done
(( av = sum / N ))
(( sd = sqrt((sumsq - N * av * av) / (N-1)) ))
(( max2 = 0.5 * max ))
if (( av > max2 * 1.1 )) || (( av < max2 * 0.9 )); then
print "WARNING: average of random numbers is suspicious.
Was testing: $randoms[$isource]"
(( ok = 0 ))
fi
if (( sd < max / 4 )); then
print "WARNING: distribution of random numbers is suspicious.
Was testing: $randoms[$isource]"
(( ok = 0 ))
fi
done
(( ok ))
0:Test random number generator distributions are not grossly broken
float -F 5 g l
(( g = gamma(2), l = lgamma(2) ))
print $g, $l
0:Test Gamma function gamma and lgamma
>1.00000, 0.00000