doc/en_US.ISO8859-1/books/handbook/geom/chapter.xml
Dru Lavigne b3708dff8b White space fix only. Translators can ignore.
Sponsored by:	iXsystems
2014-04-29 17:51:24 +00:00

1702 lines
68 KiB
XML

<?xml version="1.0" encoding="iso-8859-1"?>
<!--
The FreeBSD Documentation Project
$FreeBSD$
-->
<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0"
xml:id="geom">
<info>
<title>GEOM: Modular Disk Transformation Framework</title>
<authorgroup>
<author>
<personname>
<firstname>Tom</firstname>
<surname>Rhodes</surname>
</personname>
<contrib>Written by </contrib>
</author>
</authorgroup>
</info>
<sect1 xml:id="geom-synopsis">
<title>Synopsis</title>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary><acronym>GEOM</acronym> Disk Framework</primary>
<see><acronym>GEOM</acronym></see>
</indexterm>
<para>In &os;, the <acronym>GEOM</acronym> framework permits
access and control to classes, such as Master Boot Records and
<acronym>BSD</acronym> labels, through the use of providers, or
the disk devices in <filename>/dev</filename>. By supporting
various software <acronym>RAID</acronym> configurations,
<acronym>GEOM</acronym> transparently provides access to the
operating system and operating system utilities.</para>
<para>This chapter covers the use of disks under the
<acronym>GEOM</acronym> framework in &os;. This includes the
major <acronym>RAID</acronym> control utilities which use the
framework for configuration. This chapter is not a definitive
guide to <acronym>RAID</acronym> configurations and only
<acronym>GEOM</acronym>-supported <acronym>RAID</acronym>
classifications are discussed.</para>
<para>After reading this chapter, you will know:</para>
<itemizedlist>
<listitem>
<para>What type of <acronym>RAID</acronym> support is
available through <acronym>GEOM</acronym>.</para>
</listitem>
<listitem>
<para>How to use the base utilities to configure, maintain,
and manipulate the various <acronym>RAID</acronym>
levels.</para>
</listitem>
<listitem>
<para>How to mirror, stripe, encrypt, and remotely connect
disk devices through <acronym>GEOM</acronym>.</para>
</listitem>
<listitem>
<para>How to troubleshoot disks attached to the
<acronym>GEOM</acronym> framework.</para>
</listitem>
</itemizedlist>
<para>Before reading this chapter, you should:</para>
<itemizedlist>
<listitem>
<para>Understand how &os; treats disk devices (<xref
linkend="disks"/>).</para>
</listitem>
<listitem>
<para>Know how to configure and install a new kernel (<xref
linkend="kernelconfig"/>.</para>
</listitem>
</itemizedlist>
</sect1>
<sect1 xml:id="geom-striping">
<info>
<title>RAID0 - Striping</title>
<authorgroup>
<author>
<personname>
<firstname>Tom</firstname>
<surname>Rhodes</surname>
</personname>
<contrib>Written by </contrib>
</author>
<author>
<personname>
<firstname>Murray</firstname>
<surname>Stokely</surname>
</personname>
</author>
</authorgroup>
</info>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>Striping</primary>
</indexterm>
<para>Striping combines several disk drives into a single volume.
Striping can be performed through the use of hardware
<acronym>RAID</acronym> controllers. The
<acronym>GEOM</acronym> disk subsystem provides software support
for disk striping, also known as <acronym>RAID0</acronym>,
without the need for a <acronym>RAID</acronym> disk
controller.</para>
<para>In <acronym>RAID0</acronym>, data is split into blocks that
are written across all the drives in the array. As seen in the
following illustration, instead of having to wait on the system
to write 256k to one disk, <acronym>RAID0</acronym> can
simultaneously write 64k to each of the four disks in the array,
offering superior <acronym>I/O</acronym> performance. This
performance can be enhanced further by using multiple disk
controllers.</para>
<mediaobject>
<imageobject>
<imagedata fileref="geom/striping" align="center"/>
</imageobject>
<textobject>
<phrase>Disk Striping Illustration</phrase>
</textobject>
</mediaobject>
<para>Each disk in a <acronym>RAID0</acronym> stripe must be of
the same size, since <acronym>I/O</acronym> requests are
interleaved to read or write to multiple disks in
parallel.</para>
<note>
<para><acronym>RAID0</acronym> does <emphasis>not</emphasis>
provide any redundancy. This means that if one disk in the
array fails, all of the data on the disks is lost. If the
data is important, implement a backup strategy that regularly
saves backups to a remote system or device.</para>
</note>
<para>The process for creating a software,
<acronym>GEOM</acronym>-based <acronym>RAID0</acronym> on a &os;
system using commodity disks is as follows. Once the stripe is
created, refer to &man.gstripe.8; for more information on how
to control an existing stripe.</para>
<procedure>
<title>Creating a Stripe of Unformatted <acronym>ATA</acronym>
Disks</title>
<step>
<para>Load the <filename>geom_stripe.ko</filename>
module:</para>
<screen>&prompt.root; <userinput>kldload geom_stripe</userinput></screen>
</step>
<step>
<para>Ensure that a suitable mount point exists. If this
volume will become a root partition, then temporarily use
another mount point such as
<filename>/mnt</filename>.</para>
</step>
<step>
<para>Determine the device names for the disks which will
be striped, and create the new stripe device. For example,
to stripe two unused and unpartitioned
<acronym>ATA</acronym> disks with device names of
<filename>/dev/ad2</filename> and
<filename>/dev/ad3</filename>:</para>
<screen>&prompt.root; <userinput>gstripe label -v st0 /dev/ad2 /dev/ad3</userinput>
Metadata value stored on /dev/ad2.
Metadata value stored on /dev/ad3.
Done.</screen>
</step>
<step>
<para>Write a standard label, also known as a partition table,
on the new volume and install the default bootstrap
code:</para>
<screen>&prompt.root; <userinput>bsdlabel -wB /dev/stripe/st0</userinput></screen>
</step>
<step>
<para>This process should create two other devices in
<filename>/dev/stripe</filename> in addition to
<filename>st0</filename>. Those include
<filename>st0a</filename> and <filename>st0c</filename>. At
this point, a <acronym>UFS</acronym> file system can be
created on <filename>st0a</filename> using
<command>newfs</command>:</para>
<screen>&prompt.root; <userinput>newfs -U /dev/stripe/st0a</userinput></screen>
<para>Many numbers will glide across the screen, and after a
few seconds, the process will be complete. The volume has
been created and is ready to be mounted.</para>
</step>
<step>
<para>To manually mount the created disk stripe:</para>
<screen>&prompt.root; <userinput>mount /dev/stripe/st0a /mnt</userinput></screen>
</step>
<step>
<para>To mount this striped file system automatically during
the boot process, place the volume information in
<filename>/etc/fstab</filename>. In this example, a
permanent mount point, named <filename>stripe</filename>, is
created:</para>
<screen>&prompt.root; <userinput>mkdir /stripe</userinput>
&prompt.root; <userinput>echo "/dev/stripe/st0a /stripe ufs rw 2 2" \</userinput>
<userinput>&gt;&gt; /etc/fstab</userinput></screen>
</step>
<step>
<para>The <filename>geom_stripe.ko</filename> module must also
be automatically loaded during system initialization, by
adding a line to
<filename>/boot/loader.conf</filename>:</para>
<screen>&prompt.root; <userinput>echo 'geom_stripe_load="YES"' &gt;&gt; /boot/loader.conf</userinput></screen>
</step>
</procedure>
</sect1>
<sect1 xml:id="geom-mirror">
<title>RAID1 - Mirroring</title>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>Disk Mirroring</primary>
</indexterm>
<indexterm>
<primary>RAID1</primary>
</indexterm>
<para><acronym>RAID1</acronym>, or
<firstterm>mirroring</firstterm>, is the technique of writing
the same data to more than one disk drive. Mirrors are usually
used to guard against data loss due to drive failure. Each
drive in a mirror contains an identical copy of the data. When
an individual drive fails, the mirror continues to work,
providing data from the drives that are still functioning. The
computer keeps running, and the administrator has time to
replace the failed drive without user interruption.</para>
<para>Two common situations are illustrated in these examples.
The first creates a mirror out of two new drives and uses it as
a replacement for an existing single drive. The second example
creates a mirror on a single new drive, copies the old drive's
data to it, then inserts the old drive into the mirror. While
this procedure is slightly more complicated, it only requires
one new drive.</para>
<para>Traditionally, the two drives in a mirror are identical in
model and capacity, but &man.gmirror.8; does not require that.
Mirrors created with dissimilar drives will have a capacity
equal to that of the smallest drive in the mirror. Extra space
on larger drives will be unused. Drives inserted into the
mirror later must have at least as much capacity as the smallest
drive already in the mirror.</para>
<warning>
<para>The mirroring procedures shown here are non-destructive,
but as with any major disk operation, make a full backup
first.</para>
</warning>
<warning>
<para>While <command>dump</command> is used in these procedures
to copy file systems, it does not work on file systems with
soft updates journaling. See &man.tunefs.8; for information
on detecting and disabling soft updates journaling.</para>
</warning>
<sect2 xml:id="geom-mirror-metadata">
<title>Metadata Issues</title>
<para>Many disk systems store metadata at the end of each disk.
Old metadata should be erased before reusing the disk for a
mirror. Most problems are caused by two particular types of
leftover metadata: <acronym>GPT</acronym> partition tables and
old metadata from a previous mirror.</para>
<para><acronym>GPT</acronym> metadata can be erased with
<command>gpart</command>. This example erases both primary
and backup <acronym>GPT</acronym> partition tables from disk
<filename>ada8</filename>:</para>
<screen>&prompt.root; <userinput>gpart destroy -F ada8</userinput></screen>
<para>A disk can be removed from an active mirror and the
metadata erased in one step using <command>gmirror</command>.
Here, the example disk <filename>ada8</filename> is removed
from the active mirror <filename>gm4</filename>:</para>
<screen>&prompt.root; <userinput>gmirror remove gm4 ada8</userinput></screen>
<para>If the mirror is not running, but old mirror metadata is
still on the disk, use <command>gmirror clear</command> to
remove it:</para>
<screen>&prompt.root; <userinput>gmirror clear ada8</userinput></screen>
<para>When <command>gmirror</command> is used, one block of
metadata is stored at the end of the disk. Because
<acronym>GPT</acronym> partition schemes also store metadata
at the end of the disk, mirroring entire
<acronym>GPT</acronym> disks with <command>gmirror</command>
is not recommended. <acronym>MBR</acronym> partitioning is
used here because it only stores a partition table at the
start of the disk and does not conflict with
<command>gmirror</command>.</para>
</sect2>
<sect2 xml:id="geom-mirror-two-new-disks">
<title>Creating a Mirror with Two New Disks</title>
<para>In this example, &os; has already been installed on a
single disk, <filename>ada0</filename>. Two new disks,
<filename>ada1</filename> and <filename>ada2</filename>, have
been connected to the system. A new mirror will be created on
these two disks and used to replace the old single
disk.</para>
<para>The <filename>geom_mirror.ko</filename> kernel module must
either be built into the kernel or loaded at boot- or
run-time. Manually load the kernel module now:</para>
<screen>&prompt.root; <userinput>gmirror load</userinput></screen>
<para>Create the mirror with the two new drives:</para>
<screen>&prompt.root; <userinput>gmirror label -v gm0 /dev/ada1 /dev/ada2</userinput></screen>
<para>In this example, <filename>gm0</filename> is a user-chosen
device name assigned to the new mirror. After the mirror has
been started, this device name will appear in
<filename>/dev/mirror/</filename>.</para>
<para><acronym>MBR</acronym> and
<application>bsdlabel</application> partition tables can now
be created on the mirror with <command>gpart</command>. This
example uses a traditional file system layout, with partitions
for <filename>/</filename>, swap, <filename>/var</filename>,
<filename>/tmp</filename>, and <filename>/usr</filename>. A
single <filename>/</filename> file system and a swap partition
will also work.</para>
<para>Partitions on the mirror do not have to be the same size
as those on the existing disk, but they must be large enough
to hold all the data already present on
<filename>ada0</filename>.</para>
<screen>&prompt.root; <userinput>gpart create -s MBR mirror/gm0</userinput>
&prompt.root; <userinput>gpart add -t freebsd -a 4k mirror/gm0</userinput>
&prompt.root; <userinput>gpart show mirror/gm0</userinput>
=&gt; 63 156301423 mirror/gm0 MBR (74G)
63 63 - free - (31k)
126 156301299 1 freebsd (74G)
156301425 61 - free - (30k)</screen>
<screen>&prompt.root; <userinput>gpart create -s BSD mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-swap -a 4k -s 4g mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs -a 4k -s 1g mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs -a 4k mirror/gm0s1</userinput>
&prompt.root; <userinput>gpart show mirror/gm0s1</userinput>
=&gt; 0 156301299 mirror/gm0s1 BSD (74G)
0 2 - free - (1.0k)
2 4194304 1 freebsd-ufs (2.0G)
4194306 8388608 2 freebsd-swap (4.0G)
12582914 4194304 4 freebsd-ufs (2.0G)
16777218 2097152 5 freebsd-ufs (1.0G)
18874370 137426928 6 freebsd-ufs (65G)
156301298 1 - free - (512B)</screen>
<para>Make the mirror bootable by installing bootcode in the
<acronym>MBR</acronym> and bsdlabel and setting the active
slice:</para>
<screen>&prompt.root; <userinput>gpart bootcode -b /boot/mbr mirror/gm0</userinput>
&prompt.root; <userinput>gpart set -a active -i 1 mirror/gm0</userinput>
&prompt.root; <userinput>gpart bootcode -b /boot/boot mirror/gm0s1</userinput></screen>
<para>Format the file systems on the new mirror, enabling
soft-updates.</para>
<screen>&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1a</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1d</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1e</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1f</userinput></screen>
<para>File systems from the original <filename>ada0</filename>
disk can now be copied onto the mirror with
<command>dump</command> and <command>restore</command>.</para>
<screen>&prompt.root; <userinput>mount /dev/mirror/gm0s1a /mnt</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - / | (cd /mnt &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1d /mnt/var</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1e /mnt/tmp</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1f /mnt/usr</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /var | (cd /mnt/var &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /tmp | (cd /mnt/tmp &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr &amp;&amp; restore -rf -)</userinput></screen>
<para>Next, edit <filename>/mnt/etc/fstab</filename> to point to
the new mirror file systems:</para>
<programlisting># Device Mountpoint FStype Options Dump Pass#
/dev/mirror/gm0s1a / ufs rw 1 1
/dev/mirror/gm0s1b none swap sw 0 0
/dev/mirror/gm0s1d /var ufs rw 2 2
/dev/mirror/gm0s1e /tmp ufs rw 2 2
/dev/mirror/gm0s1f /usr ufs rw 2 2</programlisting>
<para>If the <filename>geom_mirror.ko</filename> kernel module
has not been built into the kernel,
<filename>/mnt/boot/loader.conf</filename> is edited to load
the module at boot:</para>
<programlisting>geom_mirror_load="YES"</programlisting>
<para>Reboot the system to test the new mirror and verify that
all data has been copied. The <acronym>BIOS</acronym> will
see the mirror as two individual drives rather than a mirror.
Because the drives are identical, it does not matter which is
selected to boot.</para>
<para>See <xref linkend="gmirror-troubleshooting"/> if there are
problems booting. Powering down and disconnecting the
original <filename>ada0</filename> disk will allow it to be
kept as an offline backup.</para>
<para>In use, the mirror will behave just like the original
single drive.</para>
</sect2>
<sect2 xml:id="geom-mirror-existing-drive">
<title>Creating a Mirror with an Existing Drive</title>
<para>In this example, &os; has already been installed on a
single disk, <filename>ada0</filename>. A new disk,
<filename>ada1</filename>, has been connected to the system.
A one-disk mirror will be created on the new disk, the
existing system copied onto it, and then the old disk will be
inserted into the mirror. This slightly complex procedure is
required because <command>gmirror</command> needs to put a
512-byte block of metadata at the end of each disk, and the
existing <filename>ada0</filename> has usually had all of its
space already allocated.</para>
<para>Load the <filename>geom_mirror.ko</filename> kernel
module:</para>
<screen>&prompt.root; <userinput>gmirror load</userinput></screen>
<para>Check the media size of the original disk with
<command>diskinfo</command>:</para>
<screen>&prompt.root; <userinput>diskinfo -v ada0 | head -n3</userinput>
/dev/ada0
512 # sectorsize
1000204821504 # mediasize in bytes (931G)</screen>
<para>Create a mirror on the new disk. To make certain that the
mirror capacity is not any larger than the original drive,
<command>gnop</command> is used to create a fake drive of the
exact same size. This drive does not store any data, but is
used only to limit the size of the mirror. When
<command>gmirror</command> creates the mirror, it will
restrict the capacity to the size of
<filename>gzero.nop</filename>, even if the new drive
(<filename>ada1</filename>) has more space. Note that the
<replaceable>1000204821504</replaceable> in the second line
should be equal to <filename>ada0</filename>'s media size as
shown by <command>diskinfo</command> above.</para>
<screen>&prompt.root; <userinput>geom zero load</userinput>
&prompt.root; <userinput>gnop create -s 1000204821504 gzero</userinput>
&prompt.root; <userinput>gmirror label -v gm0 gzero.nop ada1</userinput>
&prompt.root; <userinput>gmirror forget gm0</userinput></screen>
<para>Since <filename>gzero.nop</filename> does not store any
data, the mirror does not see it as connected. The mirror is
told to <quote>forget</quote> unconnected components, removing
references to <filename>gzero.nop</filename>. The result is a
mirror device containing only a single disk,
<filename>ada1</filename>.</para>
<para>After creating <filename>gm0</filename>, view the
partition table on <filename>ada0</filename>. This output is
from a 1&nbsp;TB drive. If there is some unallocated space at
the end of the drive, the contents may be copied directly from
<filename>ada0</filename> to the new mirror.</para>
<para>However, if the output shows that all of the space on the
disk is allocated, like in the following listing, there is no
space available for the 512-byte mirror metadata at the end of
the disk.</para>
<screen>&prompt.root; <userinput>gpart show ada0</userinput>
=&gt; 63 1953525105 ada0 MBR (931G)
63 1953525105 1 freebsd [active] (931G)</screen>
<para>In this case, the partition table must be edited to reduce
the capacity by one sector on
<filename>mirror/gm0</filename>. The procedure will be
explained later.</para>
<para>In either case, partition tables on the primary disk
should be first copied using <command>gpart backup</command>
and <command>gpart restore</command>.</para>
<screen>&prompt.root; <userinput>gpart backup ada0 &gt; table.ada0</userinput>
&prompt.root; <userinput>gpart backup ada0s1 &gt; table.ada0s1</userinput></screen>
<para>These commands create two files,
<filename>table.ada0</filename> and
<filename>table.ada0s1</filename>. This example is from a
1&nbsp;TB drive:</para>
<screen>&prompt.root; <userinput>cat table.ada0</userinput>
MBR 4
1 freebsd 63 1953525105 [active]</screen>
<screen>&prompt.root; <userinput>cat table.ada0s1</userinput>
BSD 8
1 freebsd-ufs 0 4194304
2 freebsd-swap 4194304 33554432
4 freebsd-ufs 37748736 50331648
5 freebsd-ufs 88080384 41943040
6 freebsd-ufs 130023424 838860800
7 freebsd-ufs 968884224 984640881</screen>
<para>If the output of <command>gpart show</command> shows no
free space at the end of the disk, the size of both the slice
and the last partition must be reduced by one sector. Edit
the two files, reducing the size of both the slice and last
partition by one. These are the last numbers in each
listing.</para>
<screen>&prompt.root; <userinput>cat table.ada0</userinput>
MBR 4
1 freebsd 63 <emphasis>1953525104</emphasis> [active]</screen>
<screen>&prompt.root; <userinput>cat table.ada0s1</userinput>
BSD 8
1 freebsd-ufs 0 4194304
2 freebsd-swap 4194304 33554432
4 freebsd-ufs 37748736 50331648
5 freebsd-ufs 88080384 41943040
6 freebsd-ufs 130023424 838860800
7 freebsd-ufs 968884224 <emphasis>984640880</emphasis></screen>
<para>If at least one sector was unallocated at the end of the
disk, these two files can be used without modification.</para>
<para>Now restore the partition table into
<filename>mirror/gm0</filename>:</para>
<screen>&prompt.root; <userinput>gpart restore mirror/gm0 &lt; table.ada0</userinput>
&prompt.root; <userinput>gpart restore mirror/gm0s1 &lt; table.ada0s1</userinput></screen>
<para>Check the partition table with
<command>gpart show</command>. This example has
<filename>gm0s1a</filename> for <filename>/</filename>,
<filename>gm0s1d</filename> for <filename>/var</filename>,
<filename>gm0s1e</filename> for <filename>/usr</filename>,
<filename>gm0s1f</filename> for <filename>/data1</filename>,
and <filename>gm0s1g</filename> for
<filename>/data2</filename>.</para>
<screen>&prompt.root; <userinput>gpart show mirror/gm0</userinput>
=&gt; 63 1953525104 mirror/gm0 MBR (931G)
63 1953525042 1 freebsd [active] (931G)
1953525105 62 - free - (31k)
&prompt.root; <userinput>gpart show mirror/gm0s1</userinput>
=&gt; 0 1953525042 mirror/gm0s1 BSD (931G)
0 2097152 1 freebsd-ufs (1.0G)
2097152 16777216 2 freebsd-swap (8.0G)
18874368 41943040 4 freebsd-ufs (20G)
60817408 20971520 5 freebsd-ufs (10G)
81788928 629145600 6 freebsd-ufs (300G)
710934528 1242590514 7 freebsd-ufs (592G)
1953525042 63 - free - (31k)</screen>
<para>Both the slice and the last partition should have some
free space at the end of each disk.</para>
<para>Create file systems on these new partitions. The number
of partitions will vary, matching the partitions on the
original disk, <filename>ada0</filename>.</para>
<screen>&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1a</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1d</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1e</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1f</userinput>
&prompt.root; <userinput>newfs -U /dev/mirror/gm0s1g</userinput></screen>
<para>Make the mirror bootable by installing bootcode in the
<acronym>MBR</acronym> and bsdlabel and setting the active
slice:</para>
<screen>&prompt.root; <userinput>gpart bootcode -b /boot/mbr mirror/gm0</userinput>
&prompt.root; <userinput>gpart set -a active -i 1 mirror/gm0</userinput>
&prompt.root; <userinput>gpart bootcode -b /boot/boot mirror/gm0s1</userinput></screen>
<para>Adjust <filename>/etc/fstab</filename> to use the new
partitions on the mirror. Back up this file first by copying
it to <filename>/etc/fstab.orig</filename>.</para>
<screen>&prompt.root; <userinput>cp /etc/fstab /etc/fstab.orig</userinput></screen>
<para>Edit <filename>/etc/fstab</filename>, replacing
<filename>/dev/ada0</filename> with
<filename>mirror/gm0</filename>.</para>
<programlisting># Device Mountpoint FStype Options Dump Pass#
/dev/mirror/gm0s1a / ufs rw 1 1
/dev/mirror/gm0s1b none swap sw 0 0
/dev/mirror/gm0s1d /var ufs rw 2 2
/dev/mirror/gm0s1e /usr ufs rw 2 2
/dev/mirror/gm0s1f /data1 ufs rw 2 2
/dev/mirror/gm0s1g /data2 ufs rw 2 2</programlisting>
<para>If the <filename>geom_mirror.ko</filename> kernel module
has not been built into the kernel, edit
<filename>/boot/loader.conf</filename> to load it:</para>
<programlisting>geom_mirror_load="YES"</programlisting>
<para>File systems from the original disk can now be copied onto
the mirror with <command>dump</command> and
<command>restore</command>. Note that it may take some time
to create a snapshot for each file system dumped with
<command>dump -L</command>.</para>
<screen>&prompt.root; <userinput>mount /dev/mirror/gm0s1a /mnt</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - / | (cd /mnt &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1d /mnt/var</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1e /mnt/usr</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1f /mnt/data1</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1g /mnt/data2</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /var | (cd /mnt/var &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /data1 | (cd /mnt/data1 &amp;&amp; restore -rf -)</userinput>
&prompt.root; <userinput>dump -C16 -b64 -0aL -f - /data2 | (cd /mnt/data2 &amp;&amp; restore -rf -)</userinput></screen>
<para>Restart the system, booting from
<filename>ada1</filename>. If everything is working, the
system will boot from <filename>mirror/gm0</filename>, which
now contains the same data as <filename>ada0</filename> had
previously. See <xref linkend="gmirror-troubleshooting"/> if
there are problems booting.</para>
<para>At this point, the mirror still consists of only the
single <filename>ada1</filename> disk.</para>
<para>After booting from <filename>mirror/gm0</filename>
successfully, the final step is inserting
<filename>ada0</filename> into the mirror.</para>
<important>
<para>When <filename>ada0</filename> is inserted into the
mirror, its former contents will be overwritten by data on
the mirror. Make certain that
<filename>mirror/gm0</filename> has the same contents as
<filename>ada0</filename> before adding
<filename>ada0</filename> to the mirror. If there is
something wrong with the contents copied by
<command>dump</command> and <command>restore</command>,
revert <filename>/etc/fstab</filename> to mount the file
systems on <filename>ada0</filename>, reboot, and try the
whole procedure again.</para>
</important>
<screen>&prompt.root; <userinput>gmirror insert gm0 ada0</userinput>
GEOM_MIRROR: Device gm0: rebuilding provider ada0</screen>
<para>Synchronization between the two disks will start
immediately. Use <command>gmirror status</command> to view
the progress.</para>
<screen>&prompt.root; <userinput>gmirror status</userinput>
Name Status Components
mirror/gm0 DEGRADED ada1 (ACTIVE)
ada0 (SYNCHRONIZING, 64%)</screen>
<para>After a while, synchronization will finish.</para>
<screen>GEOM_MIRROR: Device gm0: rebuilding provider ada0 finished.
&prompt.root; <userinput>gmirror status</userinput>
Name Status Components
mirror/gm0 COMPLETE ada1 (ACTIVE)
ada0 (ACTIVE)</screen>
<para>The mirror, <filename>mirror/gm0</filename>, now consists
of the two disks <filename>ada0</filename> and
<filename>ada1</filename>, and the contents are automatically
synchronized with each other. In use,
<filename>mirror/gm0</filename> will behave just like the
original single drive.</para>
</sect2>
<sect2 xml:id="gmirror-troubleshooting">
<title>Troubleshooting</title>
<para>If the system no longer boots, <acronym>BIOS</acronym>
settings may have to be changed to boot from one of the new
mirrored drives. Either mirror drive can be used for booting,
as they contain identical data.</para>
<para>If the boot stops with this message, something is wrong
with the mirror device:</para>
<screen>Mounting from ufs:/dev/mirror/gm0s1a failed with error 19.
Loader variables:
vfs.root.mountfrom=ufs:/dev/mirror/gm0s1a
vfs.root.mountfrom.options=rw
Manual root filesystem specification:
&lt;fstype&gt;:&lt;device&gt; [options]
Mount &lt;device&gt; using filesystem &lt;fstype&gt;
and with the specified (optional) option list.
eg. ufs:/dev/da0s1a
zfs:tank
cd9660:/dev/acd0 ro
(which is equivalent to: mount -t cd9660 -o ro /dev/acd0 /)
? List valid disk boot devices
. Yield 1 second (for background tasks)
&lt;empty line&gt; Abort manual input
mountroot&gt;</screen>
<para>Forgetting to load the <filename>geom_mirror.ko</filename>
module in <filename>/boot/loader.conf</filename> can cause
this problem. To fix it, boot from a &os;&nbsp;9.0 or later
installation media and choose <literal>Shell</literal> at the
first prompt. Then load the mirror module and mount the
mirror device:</para>
<screen>&prompt.root; <userinput>gmirror load</userinput>
&prompt.root; <userinput>mount /dev/mirror/gm0s1a /mnt</userinput></screen>
<para>Edit <filename>/mnt/boot/loader.conf</filename>, adding a
line to load the mirror module:</para>
<programlisting>geom_mirror_load="YES"</programlisting>
<para>Save the file and reboot.</para>
<para>Other problems that cause <errorname>error 19</errorname>
require more effort to fix. Although the system should boot
from <filename>ada0</filename>, another prompt to select a
shell will appear if <filename>/etc/fstab</filename> is
incorrect. Enter <literal>ufs:/dev/ada0s1a</literal> at the
boot loader prompt and press <keycap>Enter</keycap>. Undo the
edits in <filename>/etc/fstab</filename> then mount the file
systems from the original disk (<filename>ada0</filename>)
instead of the mirror. Reboot the system and try the
procedure again.</para>
<screen>Enter full pathname of shell or RETURN for /bin/sh:
&prompt.root; <userinput>cp /etc/fstab.orig /etc/fstab</userinput>
&prompt.root; <userinput>reboot</userinput></screen>
</sect2>
<sect2>
<title>Recovering from Disk Failure</title>
<para>The benefit of disk mirroring is that an individual disk
can fail without causing the mirror to lose any data. In the
above example, if <filename>ada0</filename> fails, the mirror
will continue to work, providing data from the remaining
working drive, <filename>ada1</filename>.</para>
<para>To replace the failed drive, shut down the system and
physically replace the failed drive with a new drive of equal
or greater capacity. Manufacturers use somewhat arbitrary
values when rating drives in gigabytes, and the only way to
really be sure is to compare the total count of sectors shown
by <command>diskinfo -v</command>. A drive with larger
capacity than the mirror will work, although the extra space
on the new drive will not be used.</para>
<para>After the computer is powered back up, the mirror will be
running in a <quote>degraded</quote> mode with only one drive.
The mirror is told to forget drives that are not currently
connected:</para>
<screen>&prompt.root; <userinput>gmirror forget gm0</userinput></screen>
<para>Any old metadata should be cleared from the replacement
disk using the instructions in <xref
linkend="geom-mirror-metadata"/>. Then the disk,
<filename>ada4</filename> for this example, is inserted into
the mirror:</para>
<screen>&prompt.root; <userinput>gmirror insert gm0 /dev/ada4</userinput></screen>
<para>Resynchronization begins when the new drive is inserted
into the mirror. This process of copying mirror data to a new
drive can take a while. Performance of the mirror will be
greatly reduced during the copy, so inserting new drives is
best done when there is low demand on the computer.</para>
<para>Progress can be monitored with <command>gmirror
status</command>, which shows drives that are being
synchronized and the percentage of completion. During
resynchronization, the status will be
<computeroutput>DEGRADED</computeroutput>, changing to
<computeroutput>COMPLETE</computeroutput> when the process is
finished.</para>
</sect2>
</sect1>
<sect1 xml:id="geom-raid3">
<info>
<title><acronym>RAID</acronym>3 - Byte-level Striping with
Dedicated Parity</title>
<authorgroup>
<author>
<personname>
<firstname>Mark</firstname>
<surname>Gladman</surname>
</personname>
<contrib>Written by </contrib>
</author>
<author>
<personname>
<firstname>Daniel</firstname>
<surname>Gerzo</surname>
</personname>
</author>
</authorgroup>
<authorgroup>
<author>
<personname>
<firstname>Tom</firstname>
<surname>Rhodes</surname>
</personname>
<contrib>Based on documentation by </contrib>
</author>
<author>
<personname>
<firstname>Murray</firstname>
<surname>Stokely</surname>
</personname>
</author>
</authorgroup>
</info>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>RAID3</primary>
</indexterm>
<para><acronym>RAID</acronym>3 is a method used to combine several
disk drives into a single volume with a dedicated parity disk.
In a <acronym>RAID</acronym>3 system, data is split up into a
number of bytes that are written across all the drives in the
array except for one disk which acts as a dedicated parity disk.
This means that disk reads from a <acronym>RAID</acronym>3
implementation access all disks in the array. Performance can
be enhanced by using multiple disk controllers. The
<acronym>RAID</acronym>3 array provides a fault tolerance of 1
drive, while providing a capacity of 1 - 1/n times the total
capacity of all drives in the array, where n is the number of
hard drives in the array. Such a configuration is mostly
suitable for storing data of larger sizes such as multimedia
files.</para>
<para>At least 3 physical hard drives are required to build a
<acronym>RAID</acronym>3 array. Each disk must be of the same
size, since <acronym>I/O</acronym> requests are interleaved to
read or write to multiple disks in parallel. Also, due to the
nature of <acronym>RAID</acronym>3, the number of drives must be
equal to 3, 5, 9, 17, and so on, or 2^n + 1.</para>
<para>This section demonstrates how to create a software
<acronym>RAID</acronym>3 on a &os; system.</para>
<note>
<para>While it is theoretically possible to boot from a
<acronym>RAID</acronym>3 array on &os;, that configuration is
uncommon and is not advised.</para>
</note>
<sect2>
<title>Creating a Dedicated <acronym>RAID</acronym>3
Array</title>
<para>In &os;, support for <acronym>RAID</acronym>3 is
implemented by the &man.graid3.8; <acronym>GEOM</acronym>
class. Creating a dedicated <acronym>RAID</acronym>3 array on
&os; requires the following steps.</para>
<procedure>
<step>
<para>First, load the <filename>geom_raid3.ko</filename>
kernel module by issuing one of the following
commands:</para>
<screen>&prompt.root; <userinput>graid3 load</userinput></screen>
<para>or:</para>
<screen>&prompt.root; <userinput>kldload geom_raid3</userinput></screen>
</step>
<step>
<para>Ensure that a suitable mount point exists. This
command creates a new directory to use as the mount
point:</para>
<screen>&prompt.root; <userinput>mkdir <replaceable>/multimedia</replaceable></userinput></screen>
</step>
<step>
<para>Determine the device names for the disks which will be
added to the array, and create the new
<acronym>RAID</acronym>3 device. The final device listed
will act as the dedicated parity disk. This example uses
three unpartitioned <acronym>ATA</acronym> drives:
<filename><replaceable>ada1</replaceable></filename> and
<filename><replaceable>ada2</replaceable></filename> for
data, and
<filename><replaceable>ada3</replaceable></filename> for
parity.</para>
<screen>&prompt.root; <userinput>graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3</userinput>
Metadata value stored on /dev/ada1.
Metadata value stored on /dev/ada2.
Metadata value stored on /dev/ada3.
Done.</screen>
</step>
<step>
<para>Partition the newly created <filename>gr0</filename>
device and put a <acronym>UFS</acronym> file system on
it:</para>
<screen>&prompt.root; <userinput>gpart create -s GPT /dev/raid3/gr0</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs /dev/raid3/gr0</userinput>
&prompt.root; <userinput>newfs -j /dev/raid3/gr0p1</userinput></screen>
<para>Many numbers will glide across the screen, and after a
bit of time, the process will be complete. The volume has
been created and is ready to be mounted:</para>
<screen>&prompt.root; <userinput>mount /dev/raid3/gr0p1 /multimedia/</userinput></screen>
<para>The <acronym>RAID</acronym>3 array is now ready to
use.</para>
</step>
</procedure>
<para>Additional configuration is needed to retain this setup
across system reboots.</para>
<procedure>
<step>
<para>The <filename>geom_raid3.ko</filename> module must be
loaded before the array can be mounted. To automatically
load the kernel module during system initialization, add
the following line to
<filename>/boot/loader.conf</filename>:</para>
<programlisting>geom_raid3_load="YES"</programlisting>
</step>
<step>
<para>The following volume information must be added to
<filename>/etc/fstab</filename> in order to
automatically mount the array's file system during the
system boot process:</para>
<programlisting>/dev/raid3/gr0p1 /multimedia ufs rw 2 2</programlisting>
</step>
</procedure>
</sect2>
</sect1>
<sect1 xml:id="geom-graid">
<info>
<title>Software <acronym>RAID</acronym> Devices</title>
<authorgroup>
<author>
<personname>
<firstname>Warren</firstname>
<surname>Block</surname>
</personname>
<contrib>Originally contributed by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>Software RAID Devices</primary>
<secondary>Hardware-assisted RAID</secondary>
</indexterm>
<para>Some motherboards and expansion cards add some simple
hardware, usually just a <acronym>ROM</acronym>, that allows the
computer to boot from a <acronym>RAID</acronym> array. After
booting, access to the <acronym>RAID</acronym> array is handled
by software running on the computer's main processor. This
<quote>hardware-assisted software
<acronym>RAID</acronym></quote> gives <acronym>RAID</acronym>
arrays that are not dependent on any particular operating
system, and which are functional even before an operating system
is loaded.</para>
<para>Several levels of <acronym>RAID</acronym> are supported,
depending on the hardware in use. See &man.graid.8; for a
complete list.</para>
<para>&man.graid.8; requires the <filename>geom_raid.ko</filename>
kernel module, which is included in the
<filename>GENERIC</filename> kernel starting with &os;&nbsp;9.1.
If needed, it can be loaded manually with
<command>graid load</command>.</para>
<sect2 xml:id="geom-graid-creating">
<title>Creating an Array</title>
<para>Software <acronym>RAID</acronym> devices often have a menu
that can be entered by pressing special keys when the computer
is booting. The menu can be used to create and delete
<acronym>RAID</acronym> arrays. &man.graid.8; can also create
arrays directly from the command line.</para>
<para><command>graid label</command> is used to create a new
array. The motherboard used for this example has an Intel
software <acronym>RAID</acronym> chipset, so the Intel
metadata format is specified. The new array is given a label
of <filename>gm0</filename>, it is a mirror
(<acronym>RAID1</acronym>), and uses drives
<filename>ada0</filename> and
<filename>ada1</filename>.</para>
<caution>
<para>Some space on the drives will be overwritten when they
are made into a new array. Back up existing data
first!</para>
</caution>
<screen>&prompt.root; <userinput>graid label Intel gm0 RAID1 ada0 ada1</userinput>
GEOM_RAID: Intel-a29ea104: Array Intel-a29ea104 created.
GEOM_RAID: Intel-a29ea104: Disk ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:0-ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Array started.
GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from STARTING to OPTIMAL.
Intel-a29ea104 created
GEOM_RAID: Intel-a29ea104: Provider raid/r0 for volume gm0 created.</screen>
<para>A status check shows the new mirror is ready for
use:</para>
<screen>&prompt.root; <userinput>graid status</userinput>
Name Status Components
raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))
ada1 (ACTIVE (ACTIVE))</screen>
<para>The array device appears in
<filename>/dev/raid/</filename>. The first array is called
<filename>r0</filename>. Additional arrays, if present, will
be <filename>r1</filename>, <filename>r2</filename>, and so
on.</para>
<para>The <acronym>BIOS</acronym> menu on some of these devices
can create arrays with special characters in their names. To
avoid problems with those special characters, arrays are given
simple numbered names like <filename>r0</filename>. To show
the actual labels, like <filename>gm0</filename> in the
example above, use &man.sysctl.8;:</para>
<screen>&prompt.root; <userinput>sysctl kern.geom.raid.name_format=1</userinput></screen>
</sect2>
<sect2 xml:id="geom-graid-volumes">
<title>Multiple Volumes</title>
<para>Some software <acronym>RAID</acronym> devices support
more than one <emphasis>volume</emphasis> on an array.
Volumes work like partitions, allowing space on the physical
drives to be split and used in different ways. For example,
Intel software <acronym>RAID</acronym> devices support two
volumes. This example creates a 40&nbsp;G mirror for safely
storing the operating system, followed by a 20&nbsp;G
<acronym>RAID0</acronym> (stripe) volume for fast temporary
storage:</para>
<screen>&prompt.root; <userinput>graid label -S 40G Intel gm0 RAID1 ada0 ada1</userinput>
&prompt.root; <userinput>graid add -S 20G gm0 RAID0</userinput></screen>
<para>Volumes appear as additional
<filename>r<replaceable>X</replaceable></filename> entries
in <filename>/dev/raid/</filename>. An array with two volumes
will show <filename>r0</filename> and
<filename>r1</filename>.</para>
<para>See &man.graid.8; for the number of volumes supported by
different software <acronym>RAID</acronym> devices.</para>
</sect2>
<sect2 xml:id="geom-graid-converting">
<title>Converting a Single Drive to a Mirror</title>
<para>Under certain specific conditions, it is possible to
convert an existing single drive to a &man.graid.8; array
without reformatting. To avoid data loss during the
conversion, the existing drive must meet these minimum
requirements:</para>
<itemizedlist>
<listitem>
<para>The drive must be partitioned with the
<acronym>MBR</acronym> partitioning scheme.
<acronym>GPT</acronym> or other partitioning schemes with
metadata at the end of the drive will be overwritten and
corrupted by the &man.graid.8; metadata.</para>
</listitem>
<listitem>
<para>There must be enough unpartitioned and unused space at
the end of the drive to hold the &man.graid.8; metadata.
This metadata varies in size, but the largest occupies
64&nbsp;M, so at least that much free space is
recommended.</para>
</listitem>
</itemizedlist>
<para>If the drive meets these requirements, start by making a
full backup. Then create a single-drive mirror with that
drive:</para>
<screen>&prompt.root; <userinput>graid label Intel gm0 RAID1 ada0 NONE</userinput></screen>
<para>&man.graid.8; metadata was written to the end of the drive
in the unused space. A second drive can now be inserted into
the mirror:</para>
<screen>&prompt.root; <userinput>graid insert raid/r0 ada1</userinput></screen>
<para>Data from the original drive will immediately begin to be
copied to the second drive. The mirror will operate in
degraded status until the copy is complete.</para>
</sect2>
<sect2 xml:id="geom-graid-inserting">
<title>Inserting New Drives into the Array</title>
<para>Drives can be inserted into an array as replacements for
drives that have failed or are missing. If there are no
failed or missing drives, the new drive becomes a spare. For
example, inserting a new drive into a working two-drive mirror
results in a two-drive mirror with one spare drive, not a
three-drive mirror.</para>
<para>In the example mirror array, data immediately begins to be
copied to the newly-inserted drive. Any existing information
on the new drive will be overwritten.</para>
<screen>&prompt.root; <userinput>graid insert raid/r0 ada1</userinput>
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to NEW.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NEW to REBUILD.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 rebuild start at 0.</screen>
</sect2>
<sect2 xml:id="geom-graid-removing">
<title>Removing Drives from the Array</title>
<para>Individual drives can be permanently removed from a
from an array and their metadata erased:</para>
<screen>&prompt.root; <userinput>graid remove raid/r0 ada1</userinput>
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from ACTIVE to OFFLINE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-[unknown] state changed from ACTIVE to NONE.
GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from OPTIMAL to DEGRADED.</screen>
</sect2>
<sect2 xml:id="geom-graid-stopping">
<title>Stopping the Array</title>
<para>An array can be stopped without removing metadata from the
drives. The array will be restarted when the system is
booted.</para>
<screen>&prompt.root; <userinput>graid stop raid/r0</userinput></screen>
</sect2>
<sect2 xml:id="geom-graid-status">
<title>Checking Array Status</title>
<para>Array status can be checked at any time. After a drive
was added to the mirror in the example above, data is being
copied from the original drive to the new drive:</para>
<screen>&prompt.root; <userinput>graid status</userinput>
Name Status Components
raid/r0 DEGRADED ada0 (ACTIVE (ACTIVE))
ada1 (ACTIVE (REBUILD 28%))</screen>
<para>Some types of arrays, like <literal>RAID0</literal> or
<literal>CONCAT</literal>, may not be shown in the status
report if disks have failed. To see these partially-failed
arrays, add <option>-ga</option>:</para>
<screen>&prompt.root; <userinput>graid status -ga</userinput>
Name Status Components
Intel-e2d07d9a BROKEN ada6 (ACTIVE (ACTIVE))</screen>
</sect2>
<sect2 xml:id="geom-graid-deleting">
<title>Deleting Arrays</title>
<para>Arrays are destroyed by deleting all of the volumes from
them. When the last volume present is deleted, the array is
stopped and metadata is removed from the drives:</para>
<screen>&prompt.root; <userinput>graid delete raid/r0</userinput></screen>
</sect2>
<sect2 xml:id="geom-graid-unexpected">
<title>Deleting Unexpected Arrays</title>
<para>Drives may unexpectedly contain &man.graid.8; metadata,
either from previous use or manufacturer testing.
&man.graid.8; will detect these drives and create an array,
interfering with access to the individual drive. To remove
the unwanted metadata:</para>
<procedure>
<step>
<para>Boot the system. At the boot menu, select
<literal>2</literal> for the loader prompt. Enter:</para>
<screen>OK <userinput>set kern.geom.raid.enable=0</userinput>
OK <userinput>boot</userinput></screen>
<para>The system will boot with &man.graid.8;
disabled.</para>
</step>
<step>
<para>Back up all data on the affected drive.</para>
</step>
<step>
<para>As a workaround, &man.graid.8; array detection
can be disabled by adding</para>
<programlisting>kern.geom.raid.enable=0</programlisting>
<para>to <filename>/boot/loader.conf</filename>.</para>
<para>To permanently remove the &man.graid.8; metadata
from the affected drive, boot a &os; installation
<acronym>CD-ROM</acronym> or memory stick, and select
<literal>Shell</literal>. Use <command>status</command>
to find the name of the array, typically
<literal>raid/r0</literal>:</para>
<screen>&prompt.root; <userinput>graid status</userinput>
Name Status Components
raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))
ada1 (ACTIVE (ACTIVE))</screen>
<para>Delete the volume by name:</para>
<screen>&prompt.root; <userinput>graid delete raid/r0</userinput></screen>
<para>If there is more than one volume shown, repeat the
process for each volume. After the last array has been
deleted, the volume will be destroyed.</para>
<para>Reboot and verify data, restoring from backup if
necessary. After the metadata has been removed, the
<literal>kern.geom.raid.enable=0</literal> entry in
<filename>/boot/loader.conf</filename> can also be
removed.</para>
</step>
</procedure>
</sect2>
</sect1>
<sect1 xml:id="geom-ggate">
<title><acronym>GEOM</acronym> Gate Network</title>
<para><acronym>GEOM</acronym> provides a simple mechanism for
providing remote access to devices such as disks,
<acronym>CD</acronym>s, and file systems through the use of the
<acronym>GEOM</acronym> Gate network daemon,
<application>ggated</application>. The system with the device
runs the server daemon which handles requests made by clients
using <application>ggatec</application>. The devices should not
contain any sensitive data as the connection between the client
and the server is not encrypted.</para>
<para>Similar to <acronym>NFS</acronym>, which is discussed in
<xref linkend="network-nfs"/>, <application>ggated</application>
is configured using an exports file. This file specifies which
systems are permitted to access the exported resources and what
level of access they are offered. For example, to give the
client <systemitem class="ipaddress">192.168.1.5</systemitem>
read and write access to the fourth slice on the first
<acronym>SCSI</acronym> disk, create
<filename>/etc/gg.exports</filename> with this line:</para>
<programlisting>192.168.1.5 RW /dev/da0s4d</programlisting>
<para>Before exporting the device, ensure it is not currently
mounted. Then, start <application>ggated</application>:</para>
<screen>&prompt.root; <userinput>ggated</userinput></screen>
<para>Several options are available for specifying an alternate
listening port or changing the default location of the exports
file. Refer to &man.ggated.8; for details.</para>
<para>To access the exported device on the client machine, first
use <command>ggatec</command> to specify the
<acronym>IP</acronym> address of the server and the device name
of the exported device. If successful, this command will
display a <literal>ggate</literal> device name to mount. Mount
that specified device name on a free mount point. This example
connects to the <filename>/dev/da0s4d</filename> partition on
<literal>192.168.1.1</literal>, then mounts
<filename>/dev/ggate0</filename> on
<filename>/mnt</filename>:</para>
<screen>&prompt.root; <userinput>ggatec create -o rw 192.168.1.1 /dev/da0s4d</userinput>
ggate0
&prompt.root; <userinput>mount /dev/ggate0 /mnt</userinput></screen>
<para>The device on the server may now be accessed through
<filename>/mnt</filename> on the client. For more details about
<command>ggatec</command> and a few usage examples, refer to
&man.ggatec.8;.</para>
<note>
<para>The mount will fail if the device is currently mounted on
either the server or any other client on the network. If
simultaneous access is needed to network resources, use
<acronym>NFS</acronym> instead.</para>
</note>
<para>When the device is no longer needed, unmount it with
<command>umount</command> so that the resource is available to
other clients.</para>
</sect1>
<sect1 xml:id="geom-glabel">
<title>Labeling Disk Devices</title>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>Disk Labels</primary>
</indexterm>
<para>During system initialization, the &os; kernel creates
device nodes as devices are found. This method of probing for
devices raises some issues. For instance, what if a new disk
device is added via <acronym>USB</acronym>? It is likely that
a flash device may be handed the device name of
<filename>da0</filename> and the original
<filename>da0</filename> shifted to
<filename>da1</filename>. This will cause issues mounting
file systems if they are listed in
<filename>/etc/fstab</filename> which may also prevent the
system from booting.</para>
<para>One solution is to chain <acronym>SCSI</acronym> devices
in order so a new device added to the <acronym>SCSI</acronym>
card will be issued unused device numbers. But what about
<acronym>USB</acronym> devices which may replace the primary
<acronym>SCSI</acronym> disk? This happens because
<acronym>USB</acronym> devices are usually probed before the
<acronym>SCSI</acronym> card. One solution is to only insert
these devices after the system has been booted. Another method
is to use only a single <acronym>ATA</acronym> drive and never
list the <acronym>SCSI</acronym> devices in
<filename>/etc/fstab</filename>.</para>
<para>A better solution is to use <command>glabel</command> to
label the disk devices and use the labels in
<filename>/etc/fstab</filename>. Because
<command>glabel</command> stores the label in the last sector of
a given provider, the label will remain persistent across
reboots. By using this label as a device, the file system may
always be mounted regardless of what device node it is accessed
through.</para>
<note>
<para><command>glabel</command> can create both transient and
permanent labels. Only permanent labels are consistent across
reboots. Refer to &man.glabel.8; for more information on the
differences between labels.</para>
</note>
<sect2>
<title>Label Types and Examples</title>
<para>Permanent labels can be a generic or a file system label.
Permanent file system labels can be created with
&man.tunefs.8; or &man.newfs.8;. These types of labels are
created in a sub-directory of <filename>/dev</filename>, and
will be named according to the file system type. For example,
<acronym>UFS</acronym>2 file system labels will be created in
<filename>/dev/ufs</filename>. Generic permanent labels can
be created with <command>glabel label</command>. These are
not file system specific and will be created in
<filename>/dev/label</filename>.</para>
<para>Temporary labels are destroyed at the next reboot. These
labels are created in <filename>/dev/label</filename> and are
suited to experimentation. A temporary label can be created
using <command>glabel create</command>.</para>
<!-- XXXTR: How do you create a file system label without running newfs
or when there is no newfs (e.g.: cd9660)? -->
<para>To create a permanent label for a
<acronym>UFS</acronym>2 file system without destroying any
data, issue the following command:</para>
<screen>&prompt.root; <userinput>tunefs -L <replaceable>home</replaceable> <replaceable>/dev/da3</replaceable></userinput></screen>
<warning>
<para>If the file system is full, this may cause data
corruption.</para>
</warning>
<para>A label should now exist in <filename>/dev/ufs</filename>
which may be added to <filename>/etc/fstab</filename>:</para>
<programlisting>/dev/ufs/home /home ufs rw 2 2</programlisting>
<note>
<para>The file system must not be mounted while attempting
to run <command>tunefs</command>.</para>
</note>
<para>Now the file system may be mounted:</para>
<screen>&prompt.root; <userinput>mount /home</userinput></screen>
<para>From this point on, so long as the
<filename>geom_label.ko</filename> kernel module is loaded at
boot with <filename>/boot/loader.conf</filename> or the
<literal>GEOM_LABEL</literal> kernel option is present,
the device node may change without any ill effect on the
system.</para>
<para>File systems may also be created with a default label
by using the <option>-L</option> flag with
<command>newfs</command>. Refer to &man.newfs.8; for
more information.</para>
<para>The following command can be used to destroy the
label:</para>
<screen>&prompt.root; <userinput>glabel destroy home</userinput></screen>
<para>The following example shows how to label the partitions of
a boot disk.</para>
<example>
<title>Labeling Partitions on the Boot Disk</title>
<para>By permanently labeling the partitions on the boot disk,
the system should be able to continue to boot normally, even
if the disk is moved to another controller or transferred to
a different system. For this example, it is assumed that a
single <acronym>ATA</acronym> disk is used, which is
currently recognized by the system as
<filename>ad0</filename>. It is also assumed that the
standard &os; partition scheme is used, with
<filename>/</filename>,
<filename>/var</filename>,
<filename>/usr</filename> and
<filename>/tmp</filename>, as
well as a swap partition.</para>
<para>Reboot the system, and at the &man.loader.8; prompt,
press <keycap>4</keycap> to boot into single user mode.
Then enter the following commands:</para>
<screen>&prompt.root; <userinput>glabel label rootfs /dev/ad0s1a</userinput>
GEOM_LABEL: Label for provider /dev/ad0s1a is label/rootfs
&prompt.root; <userinput>glabel label var /dev/ad0s1d</userinput>
GEOM_LABEL: Label for provider /dev/ad0s1d is label/var
&prompt.root; <userinput>glabel label usr /dev/ad0s1f</userinput>
GEOM_LABEL: Label for provider /dev/ad0s1f is label/usr
&prompt.root; <userinput>glabel label tmp /dev/ad0s1e</userinput>
GEOM_LABEL: Label for provider /dev/ad0s1e is label/tmp
&prompt.root; <userinput>glabel label swap /dev/ad0s1b</userinput>
GEOM_LABEL: Label for provider /dev/ad0s1b is label/swap
&prompt.root; <userinput>exit</userinput></screen>
<para>The system will continue with multi-user boot. After
the boot completes, edit <filename>/etc/fstab</filename> and
replace the conventional device names, with their respective
labels. The final <filename>/etc/fstab</filename> will
look like this:</para>
<programlisting># Device Mountpoint FStype Options Dump Pass#
/dev/label/swap none swap sw 0 0
/dev/label/rootfs / ufs rw 1 1
/dev/label/tmp /tmp ufs rw 2 2
/dev/label/usr /usr ufs rw 2 2
/dev/label/var /var ufs rw 2 2</programlisting>
<para>The system can now be rebooted. If everything went
well, it will come up normally and <command>mount</command>
will show:</para>
<screen>&prompt.root; <userinput>mount</userinput>
/dev/label/rootfs on / (ufs, local)
devfs on /dev (devfs, local)
/dev/label/tmp on /tmp (ufs, local, soft-updates)
/dev/label/usr on /usr (ufs, local, soft-updates)
/dev/label/var on /var (ufs, local, soft-updates)</screen>
</example>
<para>Starting with &os;&nbsp;7.2, the &man.glabel.8; class
supports a new label type for <acronym>UFS</acronym> file
systems, based on the unique file system id,
<literal>ufsid</literal>. These labels may be found in
<filename>/dev/ufsid</filename> and are
created automatically during system startup. It is possible
to use <literal>ufsid</literal> labels to mount partitions
using <filename>/etc/fstab</filename>. Use <command>glabel
status</command> to receive a list of file systems and their
corresponding <literal>ufsid</literal> labels:</para>
<screen>&prompt.user; <userinput>glabel status</userinput>
Name Status Components
ufsid/486b6fc38d330916 N/A ad4s1d
ufsid/486b6fc16926168e N/A ad4s1f</screen>
<para>In the above example, <filename>ad4s1d</filename>
represents <filename>/var</filename>,
while <filename>ad4s1f</filename> represents
<filename>/usr</filename>.
Using the <literal>ufsid</literal> values shown, these
partitions may now be mounted with the following entries in
<filename>/etc/fstab</filename>:</para>
<programlisting>/dev/ufsid/486b6fc38d330916 /var ufs rw 2 2
/dev/ufsid/486b6fc16926168e /usr ufs rw 2 2</programlisting>
<para>Any partitions with <literal>ufsid</literal> labels can be
mounted in this way, eliminating the need to manually create
permanent labels, while still enjoying the benefits of device
name independent mounting.</para>
</sect2>
</sect1>
<sect1 xml:id="geom-gjournal">
<title>UFS Journaling Through <acronym>GEOM</acronym></title>
<indexterm>
<primary><acronym>GEOM</acronym></primary>
</indexterm>
<indexterm>
<primary>Journaling</primary>
</indexterm>
<para>Beginning with &os;&nbsp;7.0, support for journals on
<acronym>UFS</acronym> file systems is available. The
implementation is provided through the <acronym>GEOM</acronym>
subsystem and is configured using <command>gjournal</command>.
Unlike other file system journaling implementations, the
<command>gjournal</command> method is block based and not
implemented as part of the file system. It is a
<acronym>GEOM</acronym> extension.</para>
<para>Journaling stores a log of file system transactions, such as
changes that make up a complete disk write operation, before
meta-data and file writes are committed to the disk. This
transaction log can later be replayed to redo file system
transactions, preventing file system inconsistencies.</para>
<para>This method provides another mechanism to protect against
data loss and inconsistencies of the file system. Unlike Soft
Updates, which tracks and enforces meta-data updates, and
snapshots, which create an image of the file system, a log is
stored in disk space specifically for this task. For better
performance, the journal may be stored on another disk. In this
configuration, the journal provider or storage device should be
listed after the device to enable journaling on.</para>
<para>The <filename>GENERIC</filename> kernel provides support for
<command>gjournal</command>. To automatically load the
<filename>geom_journal.ko</filename> kernel module at boot time,
add the following line to
<filename>/boot/loader.conf</filename>:</para>
<programlisting>geom_journal_load="YES"</programlisting>
<para>If a custom kernel is used, ensure the following line is in
the kernel configuration file:</para>
<programlisting>options GEOM_JOURNAL</programlisting>
<para>Once the module is loaded, a journal can be created on a new
file system using the following steps. In this example,
<filename>da4</filename> is a new <acronym>SCSI</acronym>
disk:</para>
<screen>&prompt.root; <userinput>gjournal load</userinput>
&prompt.root; <userinput>gjournal label /dev/<replaceable>da4</replaceable></userinput></screen>
<para>This will load the module and create a
<filename>/dev/da4.journal</filename> device node on
<filename>/dev/da4</filename>.</para>
<para>A <acronym>UFS</acronym> file system may now be created on
the journaled device, then mounted on an existing mount
point:</para>
<screen>&prompt.root; <userinput>newfs -O 2 -J /dev/<replaceable>da4</replaceable>.journal</userinput>
&prompt.root; <userinput>mount /dev/<replaceable>da4</replaceable>.journal <replaceable>/mnt</replaceable></userinput></screen>
<note>
<para>In the case of several slices, a journal will be created
for each individual slice. For instance, if
<filename>ad4s1</filename> and <filename>ad4s2</filename> are
both slices, then <command>gjournal</command> will create
<filename>ad4s1.journal</filename> and
<filename>ad4s2.journal</filename>.</para>
</note>
<para>Journaling may also be enabled on current file systems by
using <command>tunefs</command>. However,
<emphasis>always</emphasis> make a backup before attempting to
alter an existing file system. In most cases,
<command>gjournal</command> will fail if it is unable to create
the journal, but this does not protect against data loss
incurred as a result of misusing <command>tunefs</command>.
Refer to &man.gjournal.8; and &man.tunefs.8; for more
information about these commands.</para>
<para>It is possible to journal the boot disk of a &os; system.
Refer to the article <link
xlink:href="&url.articles.gjournal-desktop;">Implementing UFS
Journaling on a Desktop PC</link> for detailed
instructions.</para>
</sect1>
</chapter>