369 lines
9.2 KiB
Text
369 lines
9.2 KiB
Text
<!--
|
|
The FreeBSD Documentation Project
|
|
|
|
$FreeBSD$
|
|
-->
|
|
|
|
<chapter id="pci">
|
|
<title>PCI Devices</title>
|
|
|
|
<para>This chapter will talk about the FreeBSD mechanisms for
|
|
writing a device driver for a device on a PCI bus.</para>
|
|
|
|
<sect1 id="pci-probe">
|
|
<title>Probe and Attach</title>
|
|
|
|
<para>Information here about how the PCI bus code iterates through
|
|
the unattached devices and see if a newly loaded kld will attach
|
|
to any of them.</para>
|
|
|
|
<programlisting>/*
|
|
* Simple KLD to play with the PCI functions.
|
|
*
|
|
* Murray Stokely
|
|
*/
|
|
|
|
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/module.h>
|
|
#include <sys/systm.h> /* uprintf */
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h> /* defines used in kernel.h */
|
|
#include <sys/kernel.h> /* types used in module initialization */
|
|
#include <sys/conf.h> /* cdevsw struct */
|
|
#include <sys/uio.h> /* uio struct */
|
|
#include <sys/malloc.h>
|
|
#include <sys/bus.h> /* structs, prototypes for pci bus stuff */
|
|
|
|
#include <pci/pcivar.h> /* For get_pci macros! */
|
|
|
|
/* Function prototypes */
|
|
d_open_t mypci_open;
|
|
d_close_t mypci_close;
|
|
d_read_t mypci_read;
|
|
d_write_t mypci_write;
|
|
|
|
/* Character device entry points */
|
|
|
|
static struct cdevsw mypci_cdevsw = {
|
|
mypci_open,
|
|
mypci_close,
|
|
mypci_read,
|
|
mypci_write,
|
|
noioctl,
|
|
nopoll,
|
|
nommap,
|
|
nostrategy,
|
|
"mypci",
|
|
36, /* reserved for lkms - /usr/src/sys/conf/majors */
|
|
nodump,
|
|
nopsize,
|
|
D_TTY,
|
|
-1
|
|
};
|
|
|
|
/* vars */
|
|
static dev_t sdev;
|
|
|
|
/* We're more interested in probe/attach than with
|
|
open/close/read/write at this point */
|
|
|
|
int
|
|
mypci_open(dev_t dev, int oflags, int devtype, struct proc *p)
|
|
{
|
|
int err = 0;
|
|
|
|
uprintf("Opened device \"mypci\" successfully.\n");
|
|
return(err);
|
|
}
|
|
|
|
int
|
|
mypci_close(dev_t dev, int fflag, int devtype, struct proc *p)
|
|
{
|
|
int err=0;
|
|
|
|
uprintf("Closing device \"mypci.\"\n");
|
|
return(err);
|
|
}
|
|
|
|
int
|
|
mypci_read(dev_t dev, struct uio *uio, int ioflag)
|
|
{
|
|
int err = 0;
|
|
|
|
uprintf("mypci read!\n");
|
|
return err;
|
|
}
|
|
|
|
int
|
|
mypci_write(dev_t dev, struct uio *uio, int ioflag)
|
|
{
|
|
int err = 0;
|
|
|
|
uprintf("mypci write!\n");
|
|
return(err);
|
|
}
|
|
|
|
/* PCI Support Functions */
|
|
|
|
/*
|
|
* Return identification string if this is device is ours.
|
|
*/
|
|
static int
|
|
mypci_probe(device_t dev)
|
|
{
|
|
uprintf("MyPCI Probe\n"
|
|
"Vendor ID : 0x%x\n"
|
|
"Device ID : 0x%x\n",pci_get_vendor(dev),pci_get_device(dev));
|
|
|
|
if (pci_get_vendor(dev) == 0x11c1) {
|
|
uprintf("We've got the Winmodem, probe successful!\n");
|
|
return 0;
|
|
}
|
|
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Attach function is only called if the probe is successful */
|
|
|
|
static int
|
|
mypci_attach(device_t dev)
|
|
{
|
|
uprintf("MyPCI Attach for : deviceID : 0x%x\n",pci_get_vendor(dev));
|
|
sdev = make_dev(<literal>&</literal>mypci_cdevsw,
|
|
0,
|
|
UID_ROOT,
|
|
GID_WHEEL,
|
|
0600,
|
|
"mypci");
|
|
uprintf("Mypci device loaded.\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Detach device. */
|
|
|
|
static int
|
|
mypci_detach(device_t dev)
|
|
{
|
|
uprintf("Mypci detach!\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Called during system shutdown after sync. */
|
|
|
|
static int
|
|
mypci_shutdown(device_t dev)
|
|
{
|
|
uprintf("Mypci shutdown!\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device suspend routine.
|
|
*/
|
|
static int
|
|
mypci_suspend(device_t dev)
|
|
{
|
|
uprintf("Mypci suspend!\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device resume routine.
|
|
*/
|
|
|
|
static int
|
|
mypci_resume(device_t dev)
|
|
{
|
|
uprintf("Mypci resume!\n");
|
|
return 0;
|
|
}
|
|
|
|
static device_method_t mypci_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, mypci_probe),
|
|
DEVMETHOD(device_attach, mypci_attach),
|
|
DEVMETHOD(device_detach, mypci_detach),
|
|
DEVMETHOD(device_shutdown, mypci_shutdown),
|
|
DEVMETHOD(device_suspend, mypci_suspend),
|
|
DEVMETHOD(device_resume, mypci_resume),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t mypci_driver = {
|
|
"mypci",
|
|
mypci_methods,
|
|
0,
|
|
/* sizeof(struct mypci_softc), */
|
|
};
|
|
|
|
static devclass_t mypci_devclass;
|
|
|
|
DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass, 0, 0);</programlisting>
|
|
|
|
<para>Additional Resources
|
|
<itemizedlist>
|
|
<listitem><simpara><ulink url="http://www.pcisig.org/">PCI
|
|
Special Interest Group</ulink></simpara></listitem>
|
|
|
|
<listitem><simpara>PCI System Architecture, Fourth Edition by
|
|
Tom Shanley, et al.</simpara></listitem>
|
|
|
|
</itemizedlist>
|
|
</para>
|
|
</sect1>
|
|
|
|
<sect1 id="pci-bus">
|
|
<title>Bus Resources</title>
|
|
|
|
<para>FreeBSD provides an object-oriented mechanism for requesting
|
|
resources from a parent bus. Almost all devices will be a child
|
|
member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these
|
|
devices need to acquire resources from their parent bus (such as
|
|
memory segments, interrupt lines, or DMA channels).</para>
|
|
|
|
<sect2>
|
|
<title>Base Address Registers</title>
|
|
|
|
<para>To do anything particularly useful with a PCI device you
|
|
will need to obtain the <emphasis>Base Address
|
|
Registers</emphasis> (BARs) from the PCI Configuration space.
|
|
The PCI-specific details of obtaining the BAR are abstracted in
|
|
the <function>bus_alloc_resource()</function> function.</para>
|
|
|
|
<para>For example, a typical driver might have something similar
|
|
to this in the <function>attach()</function> function:</para>
|
|
|
|
<programlisting> sc->bar0id = 0x10;
|
|
sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar0id),
|
|
0, ~0, 1, RF_ACTIVE);
|
|
if (sc->bar0res == NULL) {
|
|
uprintf("Memory allocation of PCI base register 0 failed!\n");
|
|
error = ENXIO;
|
|
goto fail1;
|
|
}
|
|
|
|
sc->bar1id = 0x14;
|
|
sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar1id),
|
|
0, ~0, 1, RF_ACTIVE);
|
|
if (sc->bar1res == NULL) {
|
|
uprintf("Memory allocation of PCI base register 1 failed!\n");
|
|
error = ENXIO;
|
|
goto fail2;
|
|
}
|
|
sc->bar0_bt = rman_get_bustag(sc->bar0res);
|
|
sc->bar0_bh = rman_get_bushandle(sc->bar0res);
|
|
sc->bar1_bt = rman_get_bustag(sc->bar1res);
|
|
sc->bar1_bh = rman_get_bushandle(sc->bar1res);
|
|
|
|
</programlisting>
|
|
|
|
<para>Handles for each base address register are kept in the
|
|
<structname>softc</structname> structure so that they can be
|
|
used to write to the device later.</para>
|
|
|
|
<para>These handles can then be used to read or write from the
|
|
device registers with the <function>bus_space_*</function>
|
|
functions. For example, a driver might contain a shorthand
|
|
function to read from a board specific register like this:</para>
|
|
|
|
<programlisting>uint16_t
|
|
board_read(struct ni_softc *sc, uint16_t address) {
|
|
return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address);
|
|
}
|
|
</programlisting>
|
|
|
|
<para>Similarly, one could write to the registers with:</para>
|
|
|
|
<programlisting>void
|
|
board_write(struct ni_softc *sc, uint16_t address, uint16_t value) {
|
|
bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value);
|
|
}
|
|
</programlisting>
|
|
|
|
<para>These functions exist in 8bit, 16bit, and 32bit versions
|
|
and you should use
|
|
<function>bus_space_{read|write}_{1|2|4}</function>
|
|
accordingly.</para>
|
|
|
|
</sect2>
|
|
<sect2>
|
|
<title>Interrupts</title>
|
|
|
|
<para>Interrupts are allocated from the object-oriented bus code
|
|
in a way similar to the memory resources. First an IRQ
|
|
resource must be allocated from the parent bus, and then the
|
|
interrupt handler must be setup to deal with this IRQ.</para>
|
|
|
|
<para>Again, a sample from a device
|
|
<function>attach()</function> function says more than
|
|
words.</para>
|
|
|
|
<programlisting>/* Get the IRQ resource */
|
|
|
|
sc->irqid = 0x0;
|
|
sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid),
|
|
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
|
|
if (sc->irqres == NULL) {
|
|
uprintf("IRQ allocation failed!\n");
|
|
error = ENXIO;
|
|
goto fail3;
|
|
}
|
|
|
|
/* Now we should setup the interrupt handler */
|
|
|
|
error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC,
|
|
my_handler, sc, &(sc->handler));
|
|
if (error) {
|
|
printf("Couldn't set up irq\n");
|
|
goto fail4;
|
|
}
|
|
|
|
sc->irq_bt = rman_get_bustag(sc->irqres);
|
|
sc->irq_bh = rman_get_bushandle(sc->irqres);
|
|
</programlisting>
|
|
|
|
</sect2>
|
|
|
|
<sect2>
|
|
<title>DMA</title>
|
|
<para>On the PC, peripherals that want to do bus-mastering DMA
|
|
must deal with physical addresses. This is a problem since
|
|
FreeBSD uses virtual memory and deals almost exclusively with
|
|
virtual addresses. Fortunately, there is a function,
|
|
<function>vtophys()</function> to help.</para>
|
|
|
|
<programlisting>#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#define vtophys(virtual_address) (...)
|
|
</programlisting>
|
|
|
|
<para>The solution is a bit different on the alpha however, and
|
|
what we really want is a function called
|
|
<function>vtobus()</function>.</para>
|
|
|
|
<programlisting>#if defined(__alpha__)
|
|
#define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va)
|
|
#else
|
|
#define vtobus(va) vtophys(va)
|
|
#endif
|
|
</programlisting>
|
|
|
|
</sect2>
|
|
|
|
<sect2>
|
|
<title>Deallocating Resources</title>
|
|
|
|
<para>It is very important to deallocate all of the resources
|
|
that were allocated during <function>attach()</function>.
|
|
Care must be taken to deallocate the correct stuff even on a
|
|
failure condition so that the system will remain usable while
|
|
your driver dies.</para>
|
|
|
|
</sect2>
|
|
</sect1>
|
|
|
|
</chapter>
|